Monotone Simultaneous Embeddings of Upward Planar Digraphs

نویسندگان

  • Oswin Aichholzer
  • Thomas Hackl
  • Sarah Lutteropp
  • Tamara Mchedlidze
  • Alexander Pilz
  • Birgit Vogtenhuber
چکیده

We study monotone simultaneous embeddings of upward planar digraphs, which are simultaneous embeddings where the drawing of each digraph is upward planar, and the directions of the upwardness of different graphs can differ. We first consider the special case where each digraph is a directed path. In contrast to the known result that any two directed paths admit a monotone simultaneous embedding, there exist examples of three paths that do not admit such an embedding for any possible choice of directions of monotonicity. We prove that if a monotone simultaneous embedding of three paths exists then it also exists for any possible choice of directions of monotonicity. We provide a polynomial-time algorithm that, given three paths, decides whether a monotone simultaneous embedding exists and, in the case of existence, also constructs such an embedding. On the other hand, we show that already for three paths, any monotone simultaneous embedding might need a grid whose size is exponential in the number of vertices. For more than three paths, we present a polynomial-time algorithm that, given any number of paths and predefined directions of monotonicity, decides whether the paths admit a monotone simultaneous embedding with respect to the given directions, including the construction of a solution if it exists. Further, we show several implications of our results on monotone simultaneous embeddings of general upward planar digraphs. Finally, we discuss complexity issues related to our problems. Submitted: August 2014 Reviewed: January 2015 Revised: February 2015 Accepted: February 2015 Final: February 2015 Published: February 2015 Article type: Regular Paper Communicated by: G. Liotta E-mail addresses: [email protected] (Oswin Aichholzer) [email protected] (Thomas Hackl) [email protected] (Sarah Lutteropp) [email protected] (Tamara Mchedlidze) [email protected] (Alexander Pilz) [email protected] (Birgit Vogtenhuber) 88 Aichholzer et al. Monotone Simult. Embeddings of Upward Pl. Digraphs

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Upward Topological Book Embeddings of Upward Planar Digraphs

This paper studies the problem of computing an upward topological book embedding of an upward planar digraph G, i.e. a topological book embedding of G where all edges are monotonically increasing in the upward direction. Besides having its own inherent interest in the theory of upward book embeddability, the question has applications to well studied research topics of computational geometry and...

متن کامل

Upward Planar Drawings of Series-Parallel Digraphs with Maximum Degree Three

An upward planar drawing of a digraph G is a planar drawing of G where every edge is drawn as a simple curve monotone in the vertical direction. A digraph is upward planar if it has an embedding that admits an upward planar drawing. The problem of testing whether a digraph is upward planar is NP-complete. In this paper we give a linear-time algorithm to test the upward planarity of a series-par...

متن کامل

Optimal Upward Planarity Testing of Single-Source Digraphs

A digraph is upward planar if it has a planar drawing such that all the edges are monotone with respect to the vertical direction. Testing upward planarity and constructing upward planar drawings is important for displaying hierarchical network structures, which frequently arise in software engineering, project management, and visual languages. In this paper we investigate upward planarity test...

متن کامل

Evaluating Monotone Circuits on Cylinders, Planes and Tori

We re-examine the complexity of evaluating monotone planar circuits MPCVP, with special attention to circuits with cylindrical embeddings. MPCVP is known to be in NC, and for the special case of upward stratified circuits, it is known to be in LogDCFL. We characterize cylindricality, which is stronger than planarity but strictly generalizes upward planarity, and make the characterization partia...

متن کامل

Improved Upper Bounds in Nc for Monotone Planar Circuit Value and Some Restrictions and Generalizations

The P-complete Circuit Value Problem CVP, when restricted to monotone planar circuits MPCVP, is known to be in NC, and for the special case of upward stratified circuits, it is known to be in LogDCFL. In this paper we re-examine the complexity of MPCVP, with special attention to circuits with cylindrical embeddings. We characterize cylindricality, which is stronger than planarity but strictly g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Graph Algorithms Appl.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2015